Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

25,27-(6-Tosyl-3,9-dioxa-6-azaun-decane-1,11-diyldioxy)-26,28-(3,6,9-trioxaundecane-1,11-diyldioxy)calix[4]arene

Jong Seung Kim, ${ }^{\text {a }}$ Won Ku Lee, ${ }^{\text {a }}$ Jeong Ah Rim, ${ }^{\text {a }}$ William \mathbf{P}. II-Hwan Suh ${ }^{\text {e* }}$

${ }^{\text {a }}$ Department of Chemistry, Konyang University, Nonsan 320-711, Korea, ${ }^{\text {b }}$ Chemistry Department, South Dakota State University, Box 2202, Brookings, SD 57007, USA, ${ }^{\mathbf{c}}$ Neutron Physics Department, Korea Atomic Energy Institute, PO Box 105, Yusong, Taejon 305-600, Korea, ${ }^{\text {d }}$ Department of Physics, Soonchunhyang University, Onyang 336-600, Korea, and ${ }^{\text {e}}$ Department of Physics, Chungnam National University, Taejon 305-764, Korea
Correspondence e-mail: ihsuh@cnu.ac.kr

Received 4 May 2000

Accepted 7 August 2000

A new calix[4]-crowned azacrown ether, $\mathrm{C}_{51} \mathrm{H}_{59} \mathrm{NO}_{11} \mathrm{~S}$, consisting of four phenyl rings in a 1,3-alternate conformation was synthesized from the reaction of 25,27 -bis(5-chloro-3-oxapentyloxy)calix[4]crown-5 and p-toluenesulfonamide in the presence of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$. A crown-5 loop was attached on the two facing lower rims of the calix[4]arene and the N-tosyl azacrown group was attached on the other set of lower rims of the calix[4]arene backbone. This molecule seems to offer an inside cavity for the formation of a host-guest complex.

Comment

Calix[4]arenes have been shown to be useful three-dimensional molecular building blocks for the synthesis of receptors with specific properties (Andreetti et al., 1991). They can exist in four different conformations: cone, partial cone, 1,2-alternate and 1,3-alternate (Casnati et al., 1995; Kim, Suh et al., 1998). Calixcrown ethers in which the conventional crown ether moiety is incorporated into the rigid 1,3-alternate calix[4]arene have also attracted intense interest as caesiumselective extractants. This selective complexation of caesium ions is attributed not only to the electrostatic interaction between the electron-donating hetero atoms of the crown ether ring and the metal ion, but also to the cation $-\pi$ interaction between the two aromatic rings and the metal ion (Kim et al., 1997; Kim, Lee et al., 1998; Kim, Ohki et al., 1999; Kim, Pang et al., 1999). In addition to calixcrown ether, calixazacrown ether (Koh et al., 1995) in the 1,3-alternate conformation has also received attention because of its structural peculiarities: the N atom has trivalent bonding so that the N pendant calixazacrown ether would result in an optimized
structure for metal-ion complexation through three-dimensional encapsulation (Kim, Ko et al., 2000).

As part of our work on calix[4]azacrowns, we report herein the first crystal structure of a calix-crowned azacrown ether

existing in a 1,3-alternate conformation, (I); two phenyl groups, A and D, lie above and the other two phenyl groups, B and C, below the least-squares plane defined by the four bridging methylene groups, as illustrated in Fig. 1. The upper crown-5 ring is bonded to phenyl rings B and C, and the

Figure 1
ORTEPII (Johnson, 1976) drawing of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 25% probability level. Phenyl rings A and D are splayed out upwards, and phenyl rings B and C downwards. H atoms and hydrogen bonds have been omitted for clarity.
azacrown ether group is bonded to phenyl rings A and D, where the azacrown ether group consists of an azacrown ring and an N-para-toluenesulfonyl group. All bond lengths and angles in this compound are similar to those in 25,27:26,28-bis(3,9-dioxa-6-azaundecane-1,11-diyldioxy)calix[4]arene tetrahydrate (Kim, Jensen et al., 2000) and in 1,3-alternate calix[4]arenebiscrown-7 (Khrifi et al., 1997).

Bond angles involving the bridging methylenes, i.e. C6-C7-C8 117.0 (4), C2-C24-C23 118.0 (4), C28-C29-C30 122.2 (5) and $\mathrm{C} 12-\mathrm{C} 35-\mathrm{C} 34119.9(5)^{\circ}$, are significantly larger than the tetrahedral angle due to repulsions among the four phenyl groups. Similar trends were found in other calix[4]arene derivatives (Kim, Jensen et al., 2000).

The dihedral angles of two pairs of facing rings, namely A and D, to which the crown- 5 ring is bonded, and B and C, to which the azacrown-5 ring is bonded, are 49.0 (2) and 42.2 (2) ${ }^{\circ}$, respectively, so that rings A and D are splayed out upwards, and C and B are splayed out downwards from the central axis. This particular conformation leads to the distances O6…O9 4.026 (4), C1‥C36 5.139 (6), C4‥C32 7.361 (8), and O1‥O5 4.053 (6), C13 \cdots C22 5.139 (7) and C10 \cdots C26 7.078 (8) \AA. Dihedral angles of adjacent phenyl rings in the calix[4]arene range from 72.9 (2) to 89.3 (2) ${ }^{\circ}$.

The somewhat flexible cavities lined with five O atoms in the crown-5 ring [O1 $\cdots \mathrm{O} 45.897$ (6), O2 $\cdots \mathrm{O} 33.000$ (6), $\mathrm{O} 2 \cdots \mathrm{O} 45.419$ (6) and O2 $\cdots \mathrm{O} 5.504$ (6) \AA] and with four O atoms and an N atom in the azacrown-5 ring [O7…O8 4.219 (5), $\quad \mathrm{N} \cdots \mathrm{O} 73.728$ (6), $\mathrm{N} \cdots \mathrm{O} 83.145$ (6), $\mathrm{N} \cdots \mathrm{O} 6$ 6.689 (5) and $\mathrm{N} \cdots \mathrm{O} 9.722$ (5) Å] might enable the molecule to accept a guest atom.

As is evident from Table 1, the $\mathrm{S}-\mathrm{O} 10$ and $\mathrm{S}-\mathrm{O} 11$ distances in the N-para-toluenesulfonyl group clearly show double-bond character and the $\mathrm{S}-\mathrm{N}$ and $\mathrm{S}-\mathrm{C} 45$ single bonds are comparable with those found in N -tosyl calix[4]arene azacrown ether (Kim, Kim et al., 1999). The valence angles around the S atom in N-para-toluenesulfonyl are very close to the tetrahedral angle, with the exception of 118.9 (3) ${ }^{\circ}$ for $\mathrm{O} 10-\mathrm{S}-\mathrm{O} 11$. The benzene ring in this group is planar within 0.012 (4) \AA and the methyl C51 atom is also in the plane, but the S atom is -0.150 (7) \AA out of the plane.

As shown in Table 2, the four potential intramolecular C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds seem to help stabilize the structure, and pairs of molecules related by crystallographic inversion centers form dimers held together by bonds of type C51$\mathrm{H} 51 A \cdots \mathrm{O}^{\mathrm{i}}$; the $\mathrm{C} \cdots \mathrm{O}$ separation is 3.413 (8) \AA and the $\mathrm{C}-$ $\mathrm{H} \cdots \mathrm{O}$ angle is 154.1° [symmetry code: (i) $-x, 2-y,-z$]. Similar intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds were found in 25,27:26,28-bis(3,9-dioxa-6-azaundecane-1,11-dioxy)calix[4]arene tetrahydrate (Kim, Pang et al., 2000).

Experimental

p-Toluenesulfonamide $\quad(0.90 \mathrm{~g}, \quad 5.26 \mathrm{mmol}), \quad \mathrm{Cs}_{2} \mathrm{CO}_{3} \quad(6.54 \mathrm{~g}$, 20.1 mmol) and N, N^{\prime}-dimethylformamide (DMF) (100 ml) were heated to 353 K for 30 min . Then, 25,27-bis(5-chloro-3-oxapentyl-oxy)calix[4]crown-5 ($4.04 \mathrm{~g}, 5.04 \mathrm{mmol}$) dissolved in DMF (20 ml)
was added dropwise over a period of 3 h . After refluxing for 24 h , the crude mixture was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with 10% aqueous NaHCO_{3} solution. The organic layer was dried over anhydrous MgSO_{4}. Column chromatography on silica with 1:2 EtOAc-hexane as eluent gave the desired product as a solid in 50% yield (m.p. $398-400 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, p.p.m.): $\delta 7.74(d, J=8.1 \mathrm{~Hz}$, 2 H, ArH-tosyl), 7.34 ($d, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, ArH-tosyl), 7.12 ($d, J=$ $7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}_{m}$-calix), $7.05\left(d, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}_{m}\right.$-calix), $6.91(t$, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}_{p}$-calix), $6.82\left(t, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}_{p}\right.$-calix), 3.87 $\left(s, 8 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 3.63\left(s, 4 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.57(s, 4 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.49-3.46 ($m, 8 \mathrm{H}, \mathrm{ArOCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.34-3.28 ($m, 8 \mathrm{H}$, ArOCH $2_{2} \mathrm{CH}_{2} \mathrm{O}$), 3.16-3.07 ($m, 8 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{O}$), $2.46\left(s, 3 \mathrm{H}, \mathrm{ArCH}_{3}-\right.$ tosyl). Analysis calculated for $\mathrm{C}_{51} \mathrm{H}_{59} \mathrm{NO}_{11} \mathrm{~S}$: C 68.53 , H 6.60%; found: C 68.50 , H 6.63%.

Crystal data

$\mathrm{C}_{51} \mathrm{H}_{59} \mathrm{NO}_{11} \mathrm{~S}$	$D_{x}=1.291 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=894.05$	Mo Ka radiation
Monoclinic, $P 2_{1} / c$	Cell parameters from 25
$a=23.547(2) \AA$	reflections
$b=10.922(3) \AA$	$\theta=11.45-13.44^{\circ}$
$c=19.4876(18) \AA$	$\mu=0.133 \mathrm{~mm}^{-1}$
$\beta=113.340(7)^{\circ}$	$T=289(2) \mathrm{K}$
$V=4601.6(14) \AA^{3}$	Plate, colorless
$Z=4$	$0.53 \times 0.46 \times 0.15 \mathrm{~mm}$
Data collection	
Enraf-Nonius CAD-4 diffract-	$R_{\text {int }}=0.047$
ometer	$\theta_{\text {max }}=24.98^{\circ}$
Non-profiled $\omega / 2 \theta$ scans	$h=0 \rightarrow 27$
Absorption correction: ψ scan	$k=0 \rightarrow 12$
(North et al., , 968$)$	$l=-23 \rightarrow 21$
$T_{\text {min }}=0.933, T_{\text {max }}=0.981$	3 standard reflections
8225 measured reflections	frequency: 300 min
8018 independent reflections	intensity decay: 3%
3475 reflections with $I>2 \sigma(I)$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.081$

$$
S=1.011
$$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0680 P)^{2}\right. \\
& +2.5027 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.57 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

8018 reflections
571 parameters
H atoms constrained

Table 1
Selected geometric parameters ($\left(\AA,^{\circ}\right)$.

S-O11	$1.432(4)$	$\mathrm{S}-\mathrm{C} 45$	$1.751(6)$
S-O10	$1.434(4)$	$\mathrm{N}-\mathrm{C} 40$	$1.459(6)$
S-N	$1.632(4)$	$\mathrm{N}-\mathrm{C} 41$	$1.459(6)$
O11-S-O10	$118.9(3)$	$\mathrm{N}-\mathrm{S}-\mathrm{C} 45$	$105.5(3)$
O11-S-N	$107.2(2)$	$\mathrm{C} 40-\mathrm{N}-\mathrm{C} 41$	$118.6(4)$
O10-S-N	$108.0(2)$	$\mathrm{C} 40-\mathrm{N}-\mathrm{S}$	$118.0(4)$
O11-S-C45	$109.3(3)$	$\mathrm{C} 41-\mathrm{N}-\mathrm{S}$	$120.3(4)$
O10-S-C45	$107.2(3)$		

The largest residual electron-density peaks were located around the $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 4$ and O 5 atoms, and equal anisotropic displacement parameter restraints (SHELXL97; Sheldrick, 1997) were imposed on the C15 atom in order to avoid unusual values, which are probably the reason for the R factor being somewhat high. All H atoms were located in calculated positions and allowed to ride on their attached C atoms.

Table 2
Hydrogen-bonding and short contact geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A} \cdots \mathrm{O} 3$	0.97	2.57	3.033 (7)	110
$\mathrm{C} 40-\mathrm{H} 40 \mathrm{~B} \cdots \mathrm{O} 10$	0.97	2.60	3.032 (7)	107
$\mathrm{C} 41-\mathrm{H} 41 \mathrm{~B} \cdots \mathrm{O} 11$	0.97	2.29	2.814 (7)	113
C46-H46 . O 10	0.93	2.51	2.894 (7)	105
$\mathrm{C} 51-\mathrm{H} 51 A \cdots \mathrm{O}^{\text {i }}$	0.96	2.52	3.413 (8)	154

Symmetry code: (i) $-x, 2-y,-z$.

Data collection: CAD-4 EXPRESS Software (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: WinGX (Farrugia, 1998).

This research was fully supported by the Korea Research Foundation (BSRI grant No. 1999-015-DP0203) and the 2000 CNU Research and Scholarship Foundation.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BJ1002). Services for accessing these data are described at the back of the journal.

References

Andreetti, G. D., Ugozzoli, F., Ungaro, R. \& Pochini, A. (1991). Inclusion Compounds, Vol. 4, edited by J. L. Atwood, J. E. D. Davies \& D. D. MacNicol, pp. 64-125. New York: Oxford University Press.
Casnati, A., Pochini, A., Ungaro, R., Ugozzoli, F., Arnaud, F., Fanni, S., Schwing, M.-J., Egberink, R. J. M., de Jong, F. \& Reinhoudt, D. N. (1995). J. Am. Chem. Soc. 117, 2767.
Enraf-Nonius (1994). CAD-4 EXPRESS Software. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1998). WinGX. Version 1.61. University of Glasgow, Scotland. Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Khrifi, S., Guelzim, A., Baert, F., Asfari, Z. \& Vicens, J. (1997). J. Incl. Phenom. Mol. Recognit. Chem. 29, 187-195.
Kim, J. S., Jensen, W. P., Lee, C. H., Lee, J. H., Kim, M. J., Kim, J. G. \& Suh, I. H. (2000). Acta Cryst. C56, 379-381.

Kim, J. S., Kim, M. J., Choo, G. H., Lee, J. H. \& Suh, I. H. (1999). Korean J. Crystallogr. 10, 66-70.
Kim, J. S., Ko, J. W., Cho, M. H., Yu, I. Y., Shon, O. J. \& Vicens, J. (2000). J. Org. Chem. 65, 2386-2392.
Kim, J. S., Lee, W. K., Ra, D. Y., Lee, Y. I., Choi, W. K., Lee, K. W. \& Oh, W. Z. (1998). Microchem. J. 59, 464.

Kim, J. S., Ohki, A., Cho, M. H., Kim, J. K., Ra, D. Y., Cho, N. S., Bartsch, R. A., Lee, K. W. \& Oh, W. Z. (1997). Bull. Korean Chem. Soc. 18, 1014.
Kim, J. S., Ohki, A., Ueki, R., Ishizuka, T., Shimotashiro, T. \& Maeda, S. (1999). Talanta, 48, 705-710.

Kim, J. S., Pang, J. H., Yu, I. Y., Lee, W. K., Suh, I. H., Kim, J. K., Cho, M. H., Kim, E. T. \& Ra, D. Y. (1999). J. Chem. Soc. Perkin Trans. 2, p. 837.
Kim, J. S., Suh, I. H., Kim, J. K. \& Cho, M. H. (1998). J. Chem. Soc. Perkin Trans. 1, p. 2307.
Koh, K. N., Araki, K., Shinkai, S., Asfari, Z. \& Vicens, J. (1995). Tetrahedron Lett. 36, 6095-6098.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

